Use the expression 3x4 x3 29x2 x 24 to a List all of the
     Use the expression 3x^4 - x^3 - 29x^2 + x - 24 to:  a. List all of the possible zeros of the polynomial  b. write the polynomial as the product of a linear  write the expression in standard form. 
  
  Solution
Solution:
Here;
3x^4 – x^3 – 29x^2 + x – 24 = 0
b)
=> 3 *(x +3.095) *(x -3.376) *(x^2 -0.052*x +0.766) = 0
=> 3 *(x +3.095) *(x -3.376) *(x +(-0.026+i*0.875)) *(x +(-0.026-i*0.875)) = 0
a)
3 *(x +3.095) *(x -3.376) *(x +(-0.026+i*0.875)) *(x +(-0.026-i*0.875)) = 0
Hence,
(x +3.095) = 0 --eq1
(x -3.376) = 0 --eq2
(x +(-0.026+i*0.875)) = 0 --eq3
and
(x +(-0.026-i*0.875)) = 0 ---eq4
=> x = -3.095 , 3.376 , 0.026 - 0.875i , 0.026 + 0.875i

