Sections 54 55 71 102 Solutionas FKTlnZ then P and S in ter
Sections:
5.4 & 5.5
7.1
10.2
Solution
as F=-KTln(Z), then <E>,P and S in terms of F can be given as:
1.<E> =KT^2d(lnZ)/dT=-T^2d-(KTlnZ/T)/dT=-T^2d(F/T)/dT
2.P=KTd(lnZ)/dV=-Td(F/T)/dV
3.S=<E>/T+Kln(z)=<E>/T+(-)<-KTlnZ>/T=<E>/T - F/T
