Show that Txyzt ekt cosx cosy cosz satisfies the threedim
     Show that T(x,y,z,t) = e-kt (cosx + cosy + cosz) satisfies the three-dimensional heat equation:  k(delta2T/delta x2 + delta2 T/delta y2 + delta2 T/delta z2) = delta T/delta t 
  
  Solution
LHS = k( d2T/dx2 +d2T/dy2 + d2T/d2z)
 =k(d2(e^-kt (cosx+cosy+cosz)/dx2 +d2 (e^-kt (cosx+cosy +cosz)/dy2 +d2 (e^-kt (cosx+cosy +cosz)/dz2 )
 =k(-e^-kt cosx -e^-kt cosy- e^-kt cosz)
=-k(e^-kt( cosx +cosy +cosz)
RHS= dT/dt = d(e^-kt (cosx+cosy+cosz))/dt = -ke^-kt (cosx+cosy+cosz)
LHS=RHS
so given equation satisfy three dimensional heat equation

