Define addition of a set of symbols 01 by 000011101110 Defi

Define addition of a set of symbols {0,1} by : 0+0=0,0+1=1,1+0=1,1+1=0. Define multiplication by n where n is a non-negative integer by 0*0=0, 0*1=0, n*0=0, n*1=1+1+1+1+....+1(n terms) for n>0.

(a)Prove that if n is odd then n*1=1 and that if n is even then n*1=0.

(b)Verify that if one begins with the string a0 a1 the final digit is a0+a1.Verify that if one begins with the string a0 a1 a2 the final digit is a0+2a1+a2. Determine the final digit for each of the strings a0 a1 a2 a3, a0 a1 a2 a3 a4, and a0 a1 a2 a3 a4 a5.

(c) Make a conjecture for a formular for the final digit of a0 a1 a2....an. A proof is not required.

Thanks

2. The remaining questions concern the problem Sequence which was introduced in Home- work 6. Define addition of a set of symbols (0,1 by 1, 1 0 1, 1 1 0 0 0,0 1. Define multiplication by n where n is a non-negative integer by 1 for n 0 0, 0.1 0, n 0 0, m 1 n terms (a) Prove that if n is odd then n 1 1 and that if n is even then n 1 30 (b) Verify that if one begins with the string ao the final digit is ao ai. Verify that if one begins with the string ao ar a2 the final digit is ao 2a1 +a2. Determine the Bruni digit for each of the strings ao ni ma ma, on ai az aa atid as ar i asi e) Miske a conjectame for a foranula for final digit of un Aproof

Solution

Ans a)

For Odd , n.1 = 1+...1 (2k+1)times

2k+1=1+1+1....+1 (1 = (2k+1) times).

Since 1+1=0, then

2k+1=0+1+1....+1 ( 1 = (2k1) times).

But 0+1=1, so now

2k+1=1+...+1 ( 1 = (2k3) times)

   .
   .
   .
   .
   .
   .
   .
following this algorithm,

2k+1 = 0 + 1 = 1

=> n.1 =1 , when n is odd

........................................................................................................................................

For even , n.1 = 1+... +1 (2k)times

=> 2k=1+1+1 + ....+1 (we add 1 2k times).

Since 1+1=0, then

2k=0+1+1 +....+1 (we add 1 2k2 times).

=> 2k = 0 + 0 + 1 +....+1 ( 1 = (2k-4)times)
=> 2k = 0 + 0 + 0 + 1 +....+1 ( 1 = (2k-6times)

.
.
.
.
.
.
.
.
.
.
=> 2k = 0 + 0 + 0 +.....+0

But 0 + 0 = 0

=> 2k = 0 + 0 +.....+0
=> 2k = 0 +.....+0
.
.
.
.
.
.
.
=> 2k = 0

=> n.1 = 0 , when n is even

Define addition of a set of symbols {0,1} by : 0+0=0,0+1=1,1+0=1,1+1=0. Define multiplication by n where n is a non-negative integer by 0*0=0, 0*1=0, n*0=0, n*1
Define addition of a set of symbols {0,1} by : 0+0=0,0+1=1,1+0=1,1+1=0. Define multiplication by n where n is a non-negative integer by 0*0=0, 0*1=0, n*0=0, n*1

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site