Consider a rooted binary tree where each internal intermedia
Consider a rooted binary tree, where each internal (intermediate) node has 2 children. Assume each node, in particular, the leaves, has a symbol or variable associated with it. For the edges from each node to its children, associate a value 1 to one edge, and a value 0 to the other edge. A special case of such trees is the Huffman tree, or Huffman coding tree. Another special case is binary decision trees. One goal is to determine the code or sequence of 0’s and 1’s that result when one traverses a path from the root to each leaf of the tree. Devise an algorithm, pseudo-code or source code to implement the generation of such root-toleaf codes, using each of the following approaches. (Hint: in case of difficulty handling the general case for arbitrary binary trees, try to first devise solutions for concrete examples of the weighted binary trees of depths 1, 2, 3, 4, 5, 6, 7, 8, and then try to tackle the general case). (Hint: use concepts and tools of procedures, functions and recursion to achieve modularity) a. If, if-else statements, expressions
Solution
Here given that in a tree each intermediate node has two children with one edge is noted as 1 and other as 2. So, now to traverse from root to all the leaf nodes we prefer depth first search...
Algorithm Finding_Sequence(Tree t):
Above 4 steps are repeated for all the available leaf nodes and store the sequence
End Algorithm

