what are the possible orders of a subgroup of S4 explainSolu
what are the possible orders of a subgroup of S4? explain
Solution
the conjugacy classes are given by the “shapes” of the disjoint cycle decomposition of the elements. In the case of S4 the conjugacy classes are as follows:
e (· ·) (· ·)(· ·) (· · ·) (· · · ·)
e (12) (12)(34) (123) (1234)
(13) (13)(24) (132) (1342)
(14) (14)(23) (124) (1423)
(23) (142) (1243)
(24) (134) (1432)
(34) (143) (1324)
(234)
(243)
The subgroups of S4 are the following:
n subgroups of S4 of order n =type #
1 {e} C1 1
2 {e,(12)}, {e,(13)}, {e,(14)}, {e,(23)}, {e,(24)}, {e,(34)} C2 6
{e,(12)(34)}, {e,(13)(24)}, {e,(14)(23)} C2 3
3. {e,(123),(132)}, {e,(124),(142)}, {e,(134),(143)}, {e,(234),(243)} C3 4
4 {e,(12),(34),(12)(34)}, {e,(13),(24),(13)(24)}, {e,(14),(23),(14)(23)} C2 × C2 3
{e,(12)(34),(13)(24),(14)(23)} C2 × C2 1
{e,(1324),(12)(34),(1423)}, {e,(1234),(13)(24),(1432)}, C4 3
{e,(1243),(14)(23),(1342)}
6. {e,(123),(132),(12),(13),(23)}, {e,(124),(142),(12),(14),(24)}
, {e,(134),(143),(13),(14),(34)}, {e,(234),(243),(23),(24),(34)} S3 4
8 {e,(12),(34),(12)(34),(13)(24),(14)(23),(1324),(1423)},
{e,(13),(24),(13)(24),(12)(34),(14)(23),(1234),(1432)},
{e,(14),(23),(14)(23),(12)(34),(13)(24),(1243),(1342)} D4 3
12 {e,(12)(34),(13)(24),(14)(23),(123),(132),(124),(142),(134), A4 1
(143), (234),(243)}
24 S4 S4 1
Each row of the table contains a conjugacy class of subgroups. The last column lists the number of subgroups in that conjugacy class. The second to the last column lists the isomorphism type, where Ck denotes the cyclic group of order k. In all we see that there are 30 different subgroups of S4 divided into 11 conjugacy classes and 9 isomorphism types.

