Given a number n and an approximation for its square root a
Given a number, n, and an approximation for its square root, a closer approximation to the actual square root can be obtained by using this formula: new approximation=((n/ previous approximation)+ previous approximation)/2 Using the information, write a C++ program with Visual Studio 2015 that promts the user for a number and an initial guess as its square root. Using this input data, your program should be able to calculate to 0.00001. (HINT: Stop the loop when the difference between the two approximations is less than 0.00001.)
Solution
// C++ code
 #include <iostream>
 #include <string.h>
 #include <fstream>
 #include <math.h>       /* asin */
 #include <limits.h>
 #include <cmath>        // std::abs
using namespace std;
 int main()
 {
    double n, new_approximation, previous_approximation, approximation;
   cout << \"Enter n: \";
    cin >> n;
   cout << \"Enter approximation for its square root: \";
    cin >> previous_approximation;
new_approximation=((n/ previous_approximation)+ previous_approximation)/2;
   while(abs(new_approximation- previous_approximation ) > 0.00001)
    {
        previous_approximation = new_approximation;
        new_approximation=((n/ previous_approximation)+ previous_approximation)/2;
    }
cout << \"Approximated Square root: \" << new_approximation << endl;
   return 0;
 }
 /*
 output:
Enter n: 1000
 Enter approximation for its square root: 29
 Approximated Square root: 31.6228
*/

