Use a Taylor polynomial for of degree 3 for the function fx
Use a Taylor polynomial for of degree 3 for the function f(x) 0.9521 0.9644 0.9767 0.9452 = to approximate about c = 1
Solution
taylor polynomial is
f(x)=f(a)+(x-a)f\'(a)+(x-a)^2f\'\'(a)/2+(x-a)^3f\'\'\'(a)/6
now f(x)=sqrtx
f\'(x)=1/(2sqrtx)
f\'\'(x)=-1/4(x^3/2)
f\'\'\'(x)=3/8(x^5/2)
now
f(1)=1
f\'(1)=1/2
f\'\'(1)=-1/4
f\'\'\'(1)=3/8
hence
f(0.93)=1+(-1+0.93)*1/2+(-1/8)(-1+0.93)^2+3(-1+0.93)^3/48
=0.96436=0.9644(approx)
hence 2
