1 Prove that if x is orthogonal to each of vi v2 Vp then x
1. Prove that if x is orthogonal to each of vi, v2,... , Vp, then x is orthogonal to any vector in Span(vi, v2,.Vph
Solution
A.
x.v_i=0 for all i=1,...,p
Any vector in span{v1,...,vp} is, z=\\sum_{i=1}^p a_iv_i
x.z=\\sum_{i=1}^p a_i x.v_i=0
B.
1. 0 belongs to W^perpendicular
2. Let x, y belong to W^perpendicular
and w be any vector in W
(x+y).w=x.w+y.w=0+0=0
So, x+y is also in W^perpendicular
3.
Let x be in W^perpendicular and c be a real number.
For any w in W
(cx).w=c(x.w)=c*0=0
So, cx is also in W^perpendicular
Hence, W^perpendicular is a subspace
3)
Let x be in W intersection W perpendicular
So, x.x=xx^T=0
Let, x=(x1,...,xp)
xx^T=x1^2+....+xp^2=0
Since, xi are real for all i=1,..,p
Hence, xi=0 for all i=1,,...,p
Or x=0
