can I get this solved 2 The steel channel showm is to be wel
can I get this solved?
Solution
solution:
1)here given weld is subjected to direct,torsional and bending stresses and resultant stress would be algebric sum of all
2)here reaction or shear load at weld is
Fy=0
Ry=1200+3000=4200 lbf
3)here twisting about z axis if x and y axis are weld axis,then twisting is
T=torque=P2(12+4.5)=19800 lb in
4)here bending moment about x axis is
M=3000*21.5+1200*21.5
M=90300 lb in
5)here moment of inertia around x and y axis are
where x\'=l2/2=9/2=4.5\'\'
l1=l3=6.5\'\'
y\'=A1y1+A2y2+A3y3/A1+A2+A3
y\'=2(6.5)(6.5/2)t/(2*6.5*t+9*t)
y\'=1.92 \'\'
hence Ixx=2[(1/12)(6.3)^3t+6.5t(4.5-1.92)^20+9*1.92^2*t]
Ixx=165.48 t in4
where iyy=[(1/12)(l2^3t)+2(0+l1t+(x\')^2)]=324t
here J=Ixx +Iyy=489.48 t
6)hence direct stress at A
td=Ry/area=4200/22t=190.9/t
bending stress
tb=My/Ixx=90300*1.92/Ixx=1047.70/t
torsional stress
tt=Tx\'/J=182.02/t
hence resultant of torsional and direct stress is
angle m=44.49=arctan(4.5/6.5-1.92)
tr1=(td^2+tt^2+2*td*tt*cosm)^.5
tr1=345.17/t
where resultant of tb and tr1 is
here m1=90-m=45.51
tr2=(tb^2+tr1^2+2*tb*tr1*cosm1)^.5
tr2=1312.88/t
where factor of safety Nf=5
tall=.5Syt=18000
tall1=18000/5=3600 psi
hence here
tr2=tall1
t=.3646 in
and shear stress is
tr2=3600 psi for weld thickness t=.3646 in and depend on weld thickness

