Let v 1 1 1 0 0 and w 1 0 0 1 1 be vectors in R5 Find the
Let v = (1, 1, 1, 0, 0) and w = (1, 0, 0, -1, -1) be vectors in R^5. Find the dimension and basis for the subspace S = {u element R^5: u v = 0 and u w = 0}
Solution
Let, u=(a,b,c,d,e)
u.v=0 and u.w=0 gives us two equations
a+b+c=0 ie a=-b-c
a-d-e=0
We ahve five variables and two equations so 3 free variables
e=a-d=-b-c-d
So,
u=(-b-c,b,c,d,-b-c-d)=b(-1,1,0,0,-1)+c(-1,0,1,0,-1)+d(0,0,0,1,-1)
So basis for S is
{(-1,1,0,0,-1),(-1,0,1,0,-1),(0,0,0,1,-1)}
