Let W be the subspace spanned by the given vectors Find a ba
Let W be the subspace spanned by the given vectors. Find a basis for W^perpendicular W_1 = [-6 -6 -18 -6], W_2 = [6 0 18 8], W_3 = [2 8 6 0]
Solution
v1=w1+3w3=[0 18 0 0]^T
v2=w1+w2=[0 -6 0 2]^T
w3=[2 8 6 0]^T
These three vectors span W as they are linearly indepdenent as w1,w2,w3
Let, v=[a b c d ] be in W\', W\' denotes W perpendicular
So, v.v1=0=18b
So, b=0
v.v2=0=-6b+2d=0
So, d=0
v.w3=0=2a+6c
a=-3c
v=[-3c 0 c 0]^T=c[-3 0 1 0]^T
Hence basis for W\' is {[-3 0 1 0]^T}
![Let W be the subspace spanned by the given vectors. Find a basis for W^perpendicular W_1 = [-6 -6 -18 -6], W_2 = [6 0 18 8], W_3 = [2 8 6 0]Solutionv1=w1+3w3=[ Let W be the subspace spanned by the given vectors. Find a basis for W^perpendicular W_1 = [-6 -6 -18 -6], W_2 = [6 0 18 8], W_3 = [2 8 6 0]Solutionv1=w1+3w3=[](/WebImages/41/let-w-be-the-subspace-spanned-by-the-given-vectors-find-a-ba-1125143-1761599760-0.webp)