Find the exact value of COSG ir cosa and COS 4 if the ter
Find the exact value of COSG+ ) ir cosa- and COS = 4 , if the terminal side of lies in quadrant TV and the terminal side of liesin cos( + ) = 2 Edit
Solution
Solution:
Cos() = 11/61 and cos() = 9/41
Cos (+) = cos.cos – sin.sin
We know; sin2(x) + cos2(x) = 1 => sin(x) = sqrt(1 - cos2(x))
Since, Cos() = 11/61 then Sin() = ±(1 - (11/61)2) = ± 60/61
is in quadrant IV, So Sin() = - 60/61
Since, Cos() = 9/41 then Sin() = ±(1 - (9/41)2) = ± 40/41
is in quadrant I, So Sin() = 40/41
Cos (+) = cos.cos – sin.sin
= (11/61) (9/41) - (-60/61) (40/41)
= 99/2501 + 2400/2501
Cos (+) = 2499 / 2501 = 0.9992
