Simplify the following boolean functions Show all steps and
Simplify the following boolean functions. Show all steps and list the boolean identity used for each step of simplification. F(x, y) = x\'y\' + xy\' + y(xy\') F(x, y) = x\'y\' + x\'y + xy F(x, y) = x\'y\' + x\'y + xy\' F(x, y, z) = y(x\'z + xz) + x\'yz\' + xy\'z
Solution
1)F(x,y)=x\'y\'+xy\'+y(xy\')
=y\'(x\'+x)+y(xy\')............ complement of x
=y\'(1)+x(yy\')............... assiciative
=y\'+x(0)
F(x,y) =y\'
2)F(x,y)=x\'y\'+x\'y+xy
=x\'(y\'+y)+xy ...... complement of y
=x\'(1)+xy
=x\'+xy
=(x\'+x)(x\'+y) ...... complement of x
=(1)(x\'+y)
F(X,Y)=x\'+y
3)F(x,y)=x\'y\'+x\'y+xy\'
=x\'(y\'+y)+xy\'
=x\'(1)+xy\'
=x\'+xy\'
=(x\'+x)(x\'+y\')
=(1)(x\'+y\')
=x\'+y\'
4)F(x,y,z)=y(x\'z+xz)+x\'yz\'+xy\'z
=y\'+(x\'z+xz)\'+x\'yz\'+xy\'z
=y\'+(x\'\'+z\')(x\'+z\')+x\'yz\'+xy\'z
=y\'+(x+z\')(x\'+z\')+(x\'yz\'+xy\'z)\'
=y\'+(x+z\')(x\'+z\')+(x\'yz\')\'(xy\'z)\'
=y\'+(x+z\')(x\'+z\')+(x\'\'+y\'+z\'\')(x\'+y\'\'+z\')
=y\'+(x+z\')(x\'+z\')+(x+y\'+z)(x\'+y+z\')
