This Question 1 pt 4 of 5 0 complete Use identities to find

This Question: 1 pt 4 of 5 (0 complete) Use identities to find values of the sine and cosine functions of the function for the angle measure. 2x, given tan x =-3and cos x > 0 cos 2x = (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) sin 2x= (Simplify your answer, indluding any radicals. Use integers or fractions for any numbers in the expression.)

Solution

We have given tanx=-3 and cosx>0

tanx=opposite side/adjacent side =-3/1

hypotenuse =sqrt((opposite side)2+(adjacent side)2)=sqrt(9+1)=sqrt(10)

sinx=opposite side/hypotenuse =-3/sqrt(10)

cosx=adjacent side/hypotenuse =1/sqrt(10)

cos2x=cos2x-sin2x=(1/sqrt(10))2-(-3/sqrt(10))2=1/10-9/10 =-8/10=-4/5

cos2x=-4/5

sin2x=2sinx*cosx=2*(-3/sqrt(10))*(1/sqrt(10))=-6/10=-3/5

sin2x=-3/5

We have given tan110/(1-tan2110)

multiply and divide by 2 above expression

tan110/(1-tan2110)=(2/2)*[tan110/(1-tan2110)]

=(1/2)*[2tan110/(1-tan2110)]

=1/2*tan(2*110) since tan2x=2tanx/(1-tan2x)

=1/2*tan220

tan110/(1-tan2110)=1/2*tan220

We have given cos2(300)-sin2(300)

we know the formula cos2x=cos2x-sin2x

we take as x=300

cos2(300)-sin2(300)=cos(2*300)

=cos(600)

=1/2

cos2(300)-sin2(300)=1/2

 This Question: 1 pt 4 of 5 (0 complete) Use identities to find values of the sine and cosine functions of the function for the angle measure. 2x, given tan x =

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site