This Question 1 pt 4 of 5 0 complete Use identities to find
Solution
We have given tanx=-3 and cosx>0
tanx=opposite side/adjacent side =-3/1
hypotenuse =sqrt((opposite side)2+(adjacent side)2)=sqrt(9+1)=sqrt(10)
sinx=opposite side/hypotenuse =-3/sqrt(10)
cosx=adjacent side/hypotenuse =1/sqrt(10)
cos2x=cos2x-sin2x=(1/sqrt(10))2-(-3/sqrt(10))2=1/10-9/10 =-8/10=-4/5
cos2x=-4/5
sin2x=2sinx*cosx=2*(-3/sqrt(10))*(1/sqrt(10))=-6/10=-3/5
sin2x=-3/5
We have given tan110/(1-tan2110)
multiply and divide by 2 above expression
tan110/(1-tan2110)=(2/2)*[tan110/(1-tan2110)]
=(1/2)*[2tan110/(1-tan2110)]
=1/2*tan(2*110) since tan2x=2tanx/(1-tan2x)
=1/2*tan220
tan110/(1-tan2110)=1/2*tan220
We have given cos2(300)-sin2(300)
we know the formula cos2x=cos2x-sin2x
we take as x=300
cos2(300)-sin2(300)=cos(2*300)
=cos(600)
=1/2
cos2(300)-sin2(300)=1/2
