Find Laplace transform for the following two functions eat s
Solution
a)
 Let I =  e^(-st) * e^(-at) sin(wt) dt.
 (We will deal with the bounds later.)
 
 Rewrite this as I =  e^(-(s+a)t) sin(wt) dt.
 
 Now, use integration by parts:
 Let u = e^(-(s+a)t), dv = sin(wt) dt
 and du = -(s+a) e^(-(s+a)t) dt, v = (-1/w) cos(wt).
 
 So, I = (-1/w) e^(-(s+a)t) cos(wt) - (1/w)(s+a)  e^(-(s+a)t) cos(wt) dt
 
 Let u = e^(-(s+a)t), dv = cos(wt) dt
 and du = -(s+a) e^(-(s+a)t) dt, v = (1/w) sin(wt).
 
 So, I = (-1/w) e^(-(s+a)t) cos(wt) - (1/w)(s+a) [(1/w) e^(-(s+a)t) sin(wt) -
  (-1/w)(s+a) e^(-(s+a)t) sin(wt) dt]
 
 Simplifying, we obtain
 I = (-1/w) e^(-(s+a)t) cos(wt) - (1/w^2) (s+a) [e^(-(s+a)t) sin(wt) + (s+a) * I]
 ==> I = (-1/w) e^(-(s+a)t) cos(wt) - (1/w^2) (s+a) e^(-(s+a)t) sin(wt) - (1/w^2) (s+a)^2 I
 
 Solve for I:
 [1 + (1/w^2) (s+a)^2] I = (-1/w) e^(-(s+a)t) cos(wt) - (1/w^2) (s+a) e^(-(s+a)t) sin(wt)
 ==> [w^2 + (s+a)^2] I/w^2 = (-1/w^2) e^(-(s+a)t) [w cos(wt) + (s+a) sin(wt)]
 ==> I = -e^(-(s+a)t) [w cos(wt) + (s+a) sin(wt)] / [(s+a)^2 + w^2].
 --------------------
 Therefore, L {e^(-at) sin(wt)}
 = (t = 0 to ) e^(-st) * e^(-at) sin(wt) dt
 = lim(x) (t = 0 to x) e^(-st) * e^(-at) sin(wt) dt
 = lim(x) -e^(-(s+a)t) [w cos(wt) + (s+a) sin(wt)] / [(s+a)^2 + w^2] {for t = 0 to x}
 = lim(x) {-e^(-(s+a)x) [w cos(wx) + (s+a) sin(wx)] + w} / [(s+a)^2 + w^2]
 = {0 + w} / [(s+a)^2 + w^2], by the Squeeze Theorem
 = w / [(s+a)^2 + w^2].
if you like this answer, please give a thumbs up and if you have some doubt just ask in the comment section below. I will try to help. Cheers

