1 Find the eigenvalues of A 2 Find a matrix P such that P1AP
1) Find the eigenvalues of A;
2) Find a matrix P such that P-1AP is diagonal.
3) Find the solution x(t) of the equations with x(0) = (-1,1,0)
dtSolution
A = [ 5 -28 -18
-1 5 3
3 16 10]
Now, to find eigen value | A - I | = 0
[ 5 -28 -18 [ 1 0 0
-1 5 3 - 0 1 0 = 0
3 16 10] 0 0 1]
[ 5 - -28 -18
-1 5 - 3
3 16 -10 - ]
| A - I| = 0
(5 - )[ (5-) (-10 - ) - 48] + 28 [ -1 ( -10-) - 9] - 18[ -16 - 3(5-)]
(5-) [ 2 + 5 - 98] + 28 [ + 1] -18 [ 3 - 31]
-3 + 97 + 96 = 0
3 - 97 - 96 = 0
= -1 , 10.3 , -9.3
1 = -1
2 = 10.3
3 = -9.3
2) to show, P-1A P = D
[I - A] X = 0
For = -1
[ 6 -28 -18
-1 6 3
3 16 -9 ] X = 0
Using Gaussian elimination method,
R1 -> R1/6
[ 1 -14/3 -3
-1 6 3
3 16 -9]
R2 - ( -R1) * R1 ->R2
[ 1 -14/3 -3
0 4/3 0
3 16 -9]
R3 3×R1R3
[1 -14/3 -3
0 4/3 0
0 30 0]
R2 * 4/3 ->R2
[ 1 -14/3 -3
0 1 0
0 30 0]
R3 - 30* R2---> R3
[ 1 -14/3 -3
0 1 0
0 0 0]
R1 - (-14/3) × R2R1
[1 0 -3
0 1 0
0 0 0]
Hence ,
x1 - 3x3 = 0
x2 = 0
Hence X1 = [ 3x3
0
x3]
Similarly,
X2 = [-881 x3
166.64 x3
x3]
X3 = [0.98 x3
-0.14 x3
x3]
Hence,
P = [3 -881.98 0.98
0 166.4 -0.14
1 1 1]
3)
x(t) = e^(-t) c1v1 + c2 v2 e^(-9.3t) + c3(tv2 + v3)e^(10.3t)
A x[0] = [3 e^-t -881.98e^10.3 t (t + 0.98) e^(-9.3)t
0 166.64 e^(10.3)t -e^(-9.3)t
1e^(-t) e^(10.3)t (t+1) e^(-9.3t)]
Put t = 0
= [3 -881.98 0.98
0 166.64 -0.14
1 1 1]


