In problems 110 a transformation T from one Euclidean space

In problems 1-10, a transformation T from one Euclidean space to another is defined. Determine whether or not T is a linear transformation. If so, find the matrix A such that T(x)=Ax. If not tell why not

5) T(x,y,z)=(x,y^2,z^3)

9) T(x,y,z)=(2x-3y+4z, 3x-5y-7z)

Please show steps

Solution

Let T : V W be a mapping.

5) Let a be an arbitrary scalar and let u = (x,y,z) be an arbitrary element of V. Then T(au) = T(ax,ay,az) = (ax, a2y2 , a3z3) and aT(u) = a(x,y2,z3) = (ax, ay2 , az3 ). Thus, T(au) aT(u). Thus, T does not preserve scalar multiplication. Hence T is not a linear transformation.

9) Let a be an arbitrary scalar and let u = ((x1,y1,z1)) and v = (x2 ,y2,z2) be two arbitrary elements of V. Then T(u+v) = T (x1+x2, y1+y2, z1+z2)   = ( 2(x1+x2) -3(y1+y2) +4(z1+z2),   3(x1+x2) -5(y1+y2) -7(z1+z2)) = (2x1-3y1+4z1, 3x1-5y1-7z1) + (2x2-3y2+4z2 , 3x2-5y2-7z2) = T(u)+T(v). Hence T preserves vector addition.

Further T(au) = T(ax1 ,ay1 ,az1) = ( 2ax1-3ay1 +4az1 , 3ax1-5ay1-7az1) = a( 2x1- 3y1+4z1, 3x1-5y1-7z1) = aT(u). Hence T preserves scalar multiplication also. Thus T is a linear transformation.

In problems 1-10, a transformation T from one Euclidean space to another is defined. Determine whether or not T is a linear transformation. If so, find the matr

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site