53 For IEEE 754 singleprecision floating point what is the n
53. For IEEE 754 single-precision floating point, what is the number, as written in binary scientific notation, whose hexadecimal representation is the following?
*(a) 4280 0000
(b) B350 0000
(c) 0061 0000
(d) FF80 0000
(e) 7FE4 0000
(f) 8000 0000
Please show work in detail. I need to compare it to my solution to see if I am correct. I am getting mostly stuck on finding the excess bit and searching for the hidden bit and intrepreting it in bianry scientific notation.
Solution
a) 4280 0000 = 0100 0010 1000 0000 0000 0000 0000 0000
(b) B350 0000 = 1011 0011 0101 0000 0000 0000 0000 0000
c) 0061 0000 = 0000 0000 0110 0001 0000 0000 0000 0000
d) FF80 0000 = 1111 1111 1000 0000 0000 0000 0000 0000
e) 7FE4 0000 = 0111 1111 1110 0100 0000 0000 0000 0000
f) 8000 0000 = 1000 0000 0000 0000 0000 0000 0000 0000
