53 For IEEE 754 singleprecision floating point what is the n

53. For IEEE 754 single-precision floating point, what is the number, as written in binary scientific notation, whose hexadecimal representation is the following?

*(a) 4280 0000

(b) B350 0000

(c) 0061 0000

(d) FF80 0000

(e) 7FE4 0000

(f) 8000 0000

Please show work in detail. I need to compare it to my solution to see if I am correct. I am getting mostly stuck on finding the excess bit and searching for the hidden bit and intrepreting it in bianry scientific notation.

Solution


a) 4280 0000 = 0100 0010 1000 0000 0000 0000 0000 0000

(b) B350 0000 = 1011 0011 0101 0000 0000 0000 0000 0000

c) 0061 0000 = 0000 0000 0110 0001 0000 0000 0000 0000

d) FF80 0000 = 1111 1111 1000 0000 0000 0000 0000 0000

e) 7FE4 0000 = 0111 1111 1110 0100 0000 0000 0000 0000

f) 8000 0000 = 1000 0000 0000 0000 0000 0000 0000 0000

53. For IEEE 754 single-precision floating point, what is the number, as written in binary scientific notation, whose hexadecimal representation is the followin

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site