Let T1 R2 rightarrow R3 where T1x y 2x y 3x 4y Let T2 R3 r

Let T_1: R^2 rightarrow R^3, where T_1([x y]) = [2x + y 3x -4y]. Let T_2: R^3 rightarrow R^2, where T_2 ([x y z]) = [y - 3z x - 2z]. (a) What are the standard matrices of T_1 and T_2? (b) Let T = T_1 compositefunction T_2. Compute the standard matrix of T. (c) Is T invertible? If yes, find a formula for T^-1 (d) Let L = T_2 compositefunction T_1. Compute the standard matrix of L. (e) Is L invertible? If yes, find a formula for L^-1.

Solution

(a). We know that the standard matrix of a linear transformation T has columns which are images, under T, of the vectors in the standard basis. Here,T1(e1)= T1(1,0)T=(2,3,0)T and T1(e2)=T1(0,1)T=(1,0,-4)T. Hence the standard matrix of T1 is A =

2

1

3

0

0

-4

Also, T1(e1)= T2(1,0,0)T=(0,1)T ,T2(e2)=T2(0,1,0)T=(1,0)T and T2(e3)=T2(0,0,1)T=(-3,-2)T. Hence the standard matrix of T2 is B=

0

1

-3

1

0

-2

(b) (T1 oT2)(x,y,z)T= T1(T2(x,y,z)T) = T1( y-3z,x-2z)T = (x+2y-8z, 3y-9z,-4x+8z)T. Hence (T1oT2)(e1) =                   (T1oT2)(1,0,0)T=(1,0,-4)T,(T1oT2)(e2) =(T1oT2)(0,1,0)T=(2,3,0)T,and (T1oT2)(e3)=(T1oT2)(0,0,1)T=(-8,-9,8)T. Hence the standard matrix of T1oT2 is C=

1

2

-8

0

3

-9

-4

0

8

(c ) A linear transformation T is invertible if its standard mastrix is invertible. Since det ( C) = 0, hence T is not invertible.

(d) (T2 oT1)(x,y)T= T2(T1(x,y)T) = T2( 2x+y, 3x, -4y)T = (3x+12y,2x+9y)T. Now, (T2oT1)(e1) =(T2oT1)(1,0)T         = (3,2)T, and (T2oT1)(e2) =(T2oT1)(0,1)T= (12,9)T. Hence the standard matrix of T2oT1 is D =

3

12

2

9

( e) Since det(D) = 27-24 = 3 0, hence L = T2 oT1 is invertible. The standard matrix of L-1 is D-1=

3

-4

-2/3

1

The formula for L-1 is L-1 (X) = D-1 X.

2

1

3

0

0

-4

 Let T_1: R^2 rightarrow R^3, where T_1([x y]) = [2x + y 3x -4y]. Let T_2: R^3 rightarrow R^2, where T_2 ([x y z]) = [y - 3z x - 2z]. (a) What are the standard
 Let T_1: R^2 rightarrow R^3, where T_1([x y]) = [2x + y 3x -4y]. Let T_2: R^3 rightarrow R^2, where T_2 ([x y z]) = [y - 3z x - 2z]. (a) What are the standard

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site