Let T1 R2 rightarrow R3 where T1x y 2x y 3x 4y Let T2 R3 r
Solution
(a). We know that the standard matrix of a linear transformation T has columns which are images, under T, of the vectors in the standard basis. Here,T1(e1)= T1(1,0)T=(2,3,0)T and T1(e2)=T1(0,1)T=(1,0,-4)T. Hence the standard matrix of T1 is A =
2
1
3
0
0
-4
Also, T1(e1)= T2(1,0,0)T=(0,1)T ,T2(e2)=T2(0,1,0)T=(1,0)T and T2(e3)=T2(0,0,1)T=(-3,-2)T. Hence the standard matrix of T2 is B=
0
1
-3
1
0
-2
(b) (T1 oT2)(x,y,z)T= T1(T2(x,y,z)T) = T1( y-3z,x-2z)T = (x+2y-8z, 3y-9z,-4x+8z)T. Hence (T1oT2)(e1) = (T1oT2)(1,0,0)T=(1,0,-4)T,(T1oT2)(e2) =(T1oT2)(0,1,0)T=(2,3,0)T,and (T1oT2)(e3)=(T1oT2)(0,0,1)T=(-8,-9,8)T. Hence the standard matrix of T1oT2 is C=
1
2
-8
0
3
-9
-4
0
8
(c ) A linear transformation T is invertible if its standard mastrix is invertible. Since det ( C) = 0, hence T is not invertible.
(d) (T2 oT1)(x,y)T= T2(T1(x,y)T) = T2( 2x+y, 3x, -4y)T = (3x+12y,2x+9y)T. Now, (T2oT1)(e1) =(T2oT1)(1,0)T = (3,2)T, and (T2oT1)(e2) =(T2oT1)(0,1)T= (12,9)T. Hence the standard matrix of T2oT1 is D =
3
12
2
9
( e) Since det(D) = 27-24 = 3 0, hence L = T2 oT1 is invertible. The standard matrix of L-1 is D-1=
3
-4
-2/3
1
The formula for L-1 is L-1 (X) = D-1 X.
| 2 | 1 |
| 3 | 0 |
| 0 | -4 |
![Let T_1: R^2 rightarrow R^3, where T_1([x y]) = [2x + y 3x -4y]. Let T_2: R^3 rightarrow R^2, where T_2 ([x y z]) = [y - 3z x - 2z]. (a) What are the standard Let T_1: R^2 rightarrow R^3, where T_1([x y]) = [2x + y 3x -4y]. Let T_2: R^3 rightarrow R^2, where T_2 ([x y z]) = [y - 3z x - 2z]. (a) What are the standard](/WebImages/41/let-t1-r2-rightarrow-r3-where-t1x-y-2x-y-3x-4y-let-t2-r3-r-1126920-1761601106-0.webp)
![Let T_1: R^2 rightarrow R^3, where T_1([x y]) = [2x + y 3x -4y]. Let T_2: R^3 rightarrow R^2, where T_2 ([x y z]) = [y - 3z x - 2z]. (a) What are the standard Let T_1: R^2 rightarrow R^3, where T_1([x y]) = [2x + y 3x -4y]. Let T_2: R^3 rightarrow R^2, where T_2 ([x y z]) = [y - 3z x - 2z]. (a) What are the standard](/WebImages/41/let-t1-r2-rightarrow-r3-where-t1x-y-2x-y-3x-4y-let-t2-r3-r-1126920-1761601106-1.webp)