2 Let H span 1 1 0 1 0 2 3 4 2 0 3 2 2 2 0 2 Determine a ba
#2
Let H = span {[1 1 0 -1], [0 -2 3 4], [2 0 3 2], [-2 -2 0 2]}. Determine a basis for H. Give the dimension of H. Let T: R^n rightarrow R^m be a linear, 1-1 map. Prove: If {v_1, v_2,v_3} is a linearly independent set in R^m.Solution
2. Denote the vectors given in order as : a,b,c,d
So,
d=-2a
c=b+2a
So, b and a span H
So basis for H is {a,b}
Dimension is number of vectors in basis
Hence dimension of H is 2
3.
Let, a,b,c so that
aT(v1)+bT(v2)+cT(v3)=0
Since T is linear it become
T(av1+bv2+cv3)=0
But T is 1-1 map hence
av1+bv2+cv3=0
But v1,v2,v3 is a linearly indepdent set
Hence, a=b=c=0
Hence, T(v1),T(v2),T(v3) is a linearly independent set.
![#2 Let H = span {[1 1 0 -1], [0 -2 3 4], [2 0 3 2], [-2 -2 0 2]}. Determine a basis for H. Give the dimension of H. Let T: R^n rightarrow R^m be a linear, 1-1 m #2 Let H = span {[1 1 0 -1], [0 -2 3 4], [2 0 3 2], [-2 -2 0 2]}. Determine a basis for H. Give the dimension of H. Let T: R^n rightarrow R^m be a linear, 1-1 m](/WebImages/41/2-let-h-span-1-1-0-1-0-2-3-4-2-0-3-2-2-2-0-2-determine-a-ba-1127144-1761601291-0.webp)