Verify that T R3 rightarrow R given Tx y z x y 0 2x z is
     Verify that T: R^3 rightarrow R given  T(x  y  z) = (x + y  0  2x - z)  is a linear transformation.  (a). T((x_1  y_1  z_1) + (x_2  y_2  z_2)) 
  
  Solution
T( x y z) = (x + y, 0 , 2x - z)
Prperties of linear transformation:
vector addition : T( x1 y1 z1) = (x1 + y1, 0 , 2x1 - z1)
T( x2 y2 z2) = (x2 + y2, 0 , 2x2 - z2)
T(x1 y1 z1 ) + T(x2 y2 z2) = ( x1+ x2 +y1+y2, 0 , 2(x1+x2) - (z1 +z2) )
= T( x1+x2 , y1+y2 , z1+z2)
b) scalar multiplication : T(cx cy cz) = ( cx + cy , 0 , 2xc -cz)
= c( x +y , 0 , 2x - z)
T(cX) = cT(X)
It follows the prpoerties of linear transformation.Hence it is a linear transformation

