L 17 m m 22 kg theta 30 degree omegao 6 rads k 42 Nm om
Solution
solution:
1)here we will solved problem by analysing rod Ab in first position and rod BC in final position
here for first poistion
horizontal length=x=Lcos30=.866*1.7=1.4722 m
vertical length above b=Lsin30=.85 m
total vertical length=L+.5L=1.5L=2.55 m
hence length of AC=1.732 L=2.94 m
where in second position when Ab and bC are straight we have
Lac=2L=3.4 m
horizontal length=.866*1.7=1.4722 m
hence vertical height=3.064 m
hence extended length of spring=3.064-1.7=1.364 m
where angle of AB in first position
s=90-64.34=25.65degree or .4478 rad
2)hence for AB
we have moment of inertia of Ab=mL^2/3=2.1193 kg m2
where external torque=Wbc*(L/2)cos30=15.8869 N m
hence angular accelaration of AB=Tab=Iab*a
a=7.4963 rad/s2
hence angular velocity for constant torque supply is
w^2=Wo^2+2*a*s
Wo=6
Wab=6.6355 rad/s
3)for link BC,torque relation is
Tbc=Tbc due to Ab-Kx(L/2)
Tbc due to ab=Fab*L/2
where Fab=Tab/L=9.3452 N
Tbc due to ab=Fab*L/2=7.9434 N m
on putting value we get
Tbc=3.07397
Ibc=ml^2/12=.264
Tbc=Ibc*a
a=11.6438 rad/s2
where angular velocity for wo=3.4 and s=34.34 degree or .5993 rad
w^2=Wo^2+2*a*s
wbc=5.05136 rad/s

