Use MATLAB commands dsolve and ezplot to solve and graph the

Use MATLAB commands \"dsolve\" and \"ezplot\" to solve and graph the following ordinary differential equation.

note the q double prime is the second derivative and so on.

use y for q and t for t to solve.

please post a screen capture of the ezplot and the input values for dsolve.

thank you.

10-2g\" + 3c/ + 200g = 1 10cos( 120nt): 4(0) = 0 = q\"(0)

Solution

Here is the solution of the equation:

dsolve(\'(1/100)*D2y + 3*Dy + 200*y = 110*cos(120*pi*t)\',\'Dy(0) = 0\',\'y(0) = 0\')

SOLUTION:

>> dsolve1

ans =

exp(-200*t)*(11000/(14400*pi^2 + 10000) - 22000/(14400*pi^2 + 40000) + (15840*pi^2)/(14400*pi^2 + 10000) - (15840*pi^2)/(14400*pi^2 + 40000)) - exp(-100*t)*(22000/(14400*pi^2 + 10000) - 44000/(14400*pi^2 + 40000) + (15840*pi^2)/(14400*pi^2 + 10000) - (15840*pi^2)/(14400*pi^2 + 40000)) + (110*(100*cos(120*pi*t) + 120*pi*sin(120*pi*t)))/(14400*pi^2 + 10000) - (110*(200*cos(120*pi*t) + 120*pi*sin(120*pi*t)))/(14400*pi^2 + 40000)

>> simplify(ans)

ans =

(exp(-200*t)*(1375*exp(200*t)*cos(120*pi*t) - 2750*exp(100*t) - 990*pi^2*exp(100*t) + 1980*pi^2 + 2475*pi*exp(200*t)*sin(120*pi*t) - 990*pi^2*exp(200*t)*cos(120*pi*t) + 1375))/(4*(1125*pi^2 + 324*pi^4 + 625))

>> pretty(ans)

2 2 2
exp(-200 t) (1375 exp(200 t) #1 - 2750 exp(100 t) - 990 pi exp(100 t) + 1980 pi + 2475 pi exp(200 t) sin(120 pi t) - 990 pi exp(200 t) #1 + 1375)
----------------------------------------------------------------------------------------------------------------------------------------------------
4 2
4 (324 pi + 1125 pi + 625)

where

#1 == cos(120 pi t)

FOR SOME STRANGE REASON THE WEBPAGE IS HONDERING ME FROM UPLOADING ANY IMAGE(IT SAYS NULL IMAGE ERROR) SO I AM UNABLE TO UPLOAD THE PLOT AND THE SCREENSHOTS OF THE MATLAB EDITOR. BUT I TRIED MY BEST TO GIVE AN ANSWER TO YOUR QUESTION.

FOR THIS INCONVENIENCE PLEASE WRITE TO CHEGG.COM. I AM SURE THEY WILL DO SOMETHING ABOUT IT.

Use MATLAB commands \

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site