Use GaussSeidel iterative technique to find approximate solu
Solution
To guarantee convergence first we need to set the eqution 1st which has highest coefficient of x1 and equation 2nd which has highest coefficient of x2 and so on. Below will be the set of equatios:
10x1 - x2 - 2x3 = 6
-x1 + 11x2 - x3 +3x4 = 25
2x1 - x2 + 10x3 -x4 = -11
0x1 + 3x2 - x3 +8x4 = 15
Given that initial guesses are x = (0,0,0,0)
Step : 1
x1 = 6/10- (-1 x 0)/10- (2 x 0)/10- (0 x 0)/10 = 0.6
x2 = 25/11- (-1 x 0)/11- (-1 x 0)/11- (3 x 0)/11 = 2.273
x3 = -11/10- (2 x 0)/10- (-1 x 0)/10- (-1 x 0)/10 = -1.1
x4 = 15/8- (0 x 0)/8- (3 x 0)/8- (-1 x 0)/8 = 1.875
Step : 2
x1 = 6/10- (-1 x 2.273)/10- (2 x -1.1)/10- (0 x 1.875)/10 = 1.047
x2 = 25/11- (-1 x 0.6)/11- (-1 x -1.1)/11- (3 x 1.875)/11 = 1.716
x3 = -11/10- (2 x 0.6)/10- (-1 x 2.273)/10- (-1 x 1.875)/10 = -0.805
x4 = 15/8- (0 x 0.6)/8- (3 x 2.273)/8- (-1 x -1.1)/8 = 0.885
Step : 3
x1 = 6/10- (-1 x 1.716)/10- (2 x -0.805)/10- (0 x 0.885)/10 = 0.933
x2 = 25/11- (-1 x 1.047)/11- (-1 x -0.805)/11- (3 x 0.885)/11 = 2.053
x3 = -11/10- (2 x 1.047)/10- (-1 x 1.716)/10- (-1 x 0.885)/10 = -1.049
x4 = 15/8- (0 x 1.047)/8- (3 x 1.716)/8- (-1 x -0.805)/8 = 1.131
Step : 4
x1 = 6/10- (-1 x 2.053)/10- (2 x -1.049)/10- (0 x 1.131)/10 = 1.015
x2 = 25/11- (-1 x 0.933)/11- (-1 x -1.049)/11- (3 x 1.131)/11 = 1.954
x3 = -11/10- (2 x 0.933)/10- (-1 x 2.053)/10- (-1 x 1.131)/10 = -0.968
x4 = 15/8- (0 x 0.933)/8- (3 x 2.053)/8- (-1 x -1.049)/8 = 0.974
Step : 5
x1 = 6/10- (-1 x 1.954)/10- (2 x -0.968)/10- (0 x 0.974)/10 = 0.989
x2 = 25/11- (-1 x 1.015)/11- (-1 x -0.968)/11- (3 x 0.974)/11 = 2.011
x3 = -11/10- (2 x 1.015)/10- (-1 x 1.954)/10- (-1 x 0.974)/10 = -1.01
x4 = 15/8- (0 x 1.015)/8- (3 x 1.954)/8- (-1 x -0.968)/8 = 1.021
Step : 6
x1 = 6/10- (-1 x 2.011)/10- (2 x -1.01)/10- (0 x 1.021)/10 = 1.003
x2 = 25/11- (-1 x 0.989)/11- (-1 x -1.01)/11- (3 x 1.021)/11 = 1.992
x3 = -11/10- (2 x 0.989)/10- (-1 x 2.011)/10- (-1 x 1.021)/10 = -0.995
x4 = 15/8- (0 x 0.989)/8- (3 x 2.011)/8- (-1 x -1.01)/8 = 0.995
Step : 7
x1 = 6/10- (-1 x 1.992)/10- (2 x -0.995)/10- (0 x 0.995)/10 = 0.998
x2 = 25/11- (-1 x 1.003)/11- (-1 x -0.995)/11- (3 x 0.995)/11 = 2.002
x3 = -11/10- (2 x 1.003)/10- (-1 x 1.992)/10- (-1 x 0.995)/10 = -1.002
x4 = 15/8- (0 x 1.003)/8- (3 x 1.992)/8- (-1 x -0.995)/8 = 1.004
Step : 8
x1 = 6/10- (-1 x 2.002)/10- (2 x -1.002)/10- (0 x 1.004)/10 = 1.001
x2 = 25/11- (-1 x 0.998)/11- (-1 x -1.002)/11- (3 x 1.004)/11 = 1.999
x3 = -11/10- (2 x 0.998)/10- (-1 x 2.002)/10- (-1 x 1.004)/10 = -0.999
x4 = 15/8- (0 x 0.998)/8- (3 x 2.002)/8- (-1 x -1.002)/8 = 0.999
Step : 9
x1 = 6/10- (-1 x 1.999)/10- (2 x -0.999)/10- (0 x 0.999)/10 = 1
x2 = 25/11- (-1 x 1.001)/11- (-1 x -0.999)/11- (3 x 0.999)/11 = 2
x3 = -11/10- (2 x 1.001)/10- (-1 x 1.999)/10- (-1 x 0.999)/10 = -1
x4 = 15/8- (0 x 1.001)/8- (3 x 1.999)/8- (-1 x -0.999)/8 = 1.001
Step : 10
x1 = 6/10- (-1 x 2)/10- (2 x -1)/10- (0 x 1.001)/10 = 1
x2 = 25/11- (-1 x 1)/11- (-1 x -1)/11- (3 x 1.001)/11 = 2
x3 = -11/10- (2 x 1)/10- (-1 x 2)/10- (-1 x 1.001)/10 = -1
x4 = 15/8- (0 x 1)/8- (3 x 2)/8- (-1 x -1)/8 = 1

