Use GaussSeidel iterative technique to find approximate solu
Solution
To guarantee convergence first we need to set the eqution 1st which has highest coefficient of x1 and equation 2nd which has highest coefficient of x2 and so on. Below will be the set of equatios:
10x1 - x2 - 2x3 = 6
-x1 + 11x2 - x3 +3x4 = 25
2x1 - x2 + 10x3 -x4 = -11
0x1 + 3x2 - x3 +8x4 = 15
Given that initial guesses are x = (0,0,0,0)
Step : 1
x1 = 6/10- (-1 x 0)/10- (2 x 0)/10- (0 x 0)/10 = 0.6
 x2 = 25/11- (-1 x 0)/11- (-1 x 0)/11- (3 x 0)/11 = 2.273
 x3 = -11/10- (2 x 0)/10- (-1 x 0)/10- (-1 x 0)/10 = -1.1
 x4 = 15/8- (0 x 0)/8- (3 x 0)/8- (-1 x 0)/8 = 1.875
 Step : 2
x1 = 6/10- (-1 x 2.273)/10- (2 x -1.1)/10- (0 x 1.875)/10 = 1.047
 x2 = 25/11- (-1 x 0.6)/11- (-1 x -1.1)/11- (3 x 1.875)/11 = 1.716
 x3 = -11/10- (2 x 0.6)/10- (-1 x 2.273)/10- (-1 x 1.875)/10 = -0.805
 x4 = 15/8- (0 x 0.6)/8- (3 x 2.273)/8- (-1 x -1.1)/8 = 0.885
 Step : 3
x1 = 6/10- (-1 x 1.716)/10- (2 x -0.805)/10- (0 x 0.885)/10 = 0.933
 x2 = 25/11- (-1 x 1.047)/11- (-1 x -0.805)/11- (3 x 0.885)/11 = 2.053
 x3 = -11/10- (2 x 1.047)/10- (-1 x 1.716)/10- (-1 x 0.885)/10 = -1.049
 x4 = 15/8- (0 x 1.047)/8- (3 x 1.716)/8- (-1 x -0.805)/8 = 1.131
 Step : 4
x1 = 6/10- (-1 x 2.053)/10- (2 x -1.049)/10- (0 x 1.131)/10 = 1.015
 x2 = 25/11- (-1 x 0.933)/11- (-1 x -1.049)/11- (3 x 1.131)/11 = 1.954
 x3 = -11/10- (2 x 0.933)/10- (-1 x 2.053)/10- (-1 x 1.131)/10 = -0.968
 x4 = 15/8- (0 x 0.933)/8- (3 x 2.053)/8- (-1 x -1.049)/8 = 0.974
 Step : 5
x1 = 6/10- (-1 x 1.954)/10- (2 x -0.968)/10- (0 x 0.974)/10 = 0.989
 x2 = 25/11- (-1 x 1.015)/11- (-1 x -0.968)/11- (3 x 0.974)/11 = 2.011
 x3 = -11/10- (2 x 1.015)/10- (-1 x 1.954)/10- (-1 x 0.974)/10 = -1.01
 x4 = 15/8- (0 x 1.015)/8- (3 x 1.954)/8- (-1 x -0.968)/8 = 1.021
 Step : 6
x1 = 6/10- (-1 x 2.011)/10- (2 x -1.01)/10- (0 x 1.021)/10 = 1.003
 x2 = 25/11- (-1 x 0.989)/11- (-1 x -1.01)/11- (3 x 1.021)/11 = 1.992
 x3 = -11/10- (2 x 0.989)/10- (-1 x 2.011)/10- (-1 x 1.021)/10 = -0.995
 x4 = 15/8- (0 x 0.989)/8- (3 x 2.011)/8- (-1 x -1.01)/8 = 0.995
 Step : 7
x1 = 6/10- (-1 x 1.992)/10- (2 x -0.995)/10- (0 x 0.995)/10 = 0.998
 x2 = 25/11- (-1 x 1.003)/11- (-1 x -0.995)/11- (3 x 0.995)/11 = 2.002
 x3 = -11/10- (2 x 1.003)/10- (-1 x 1.992)/10- (-1 x 0.995)/10 = -1.002
 x4 = 15/8- (0 x 1.003)/8- (3 x 1.992)/8- (-1 x -0.995)/8 = 1.004
 Step : 8
x1 = 6/10- (-1 x 2.002)/10- (2 x -1.002)/10- (0 x 1.004)/10 = 1.001
 x2 = 25/11- (-1 x 0.998)/11- (-1 x -1.002)/11- (3 x 1.004)/11 = 1.999
 x3 = -11/10- (2 x 0.998)/10- (-1 x 2.002)/10- (-1 x 1.004)/10 = -0.999
 x4 = 15/8- (0 x 0.998)/8- (3 x 2.002)/8- (-1 x -1.002)/8 = 0.999
 Step : 9
x1 = 6/10- (-1 x 1.999)/10- (2 x -0.999)/10- (0 x 0.999)/10 = 1
 x2 = 25/11- (-1 x 1.001)/11- (-1 x -0.999)/11- (3 x 0.999)/11 = 2
 x3 = -11/10- (2 x 1.001)/10- (-1 x 1.999)/10- (-1 x 0.999)/10 = -1
 x4 = 15/8- (0 x 1.001)/8- (3 x 1.999)/8- (-1 x -0.999)/8 = 1.001
 Step : 10
x1 = 6/10- (-1 x 2)/10- (2 x -1)/10- (0 x 1.001)/10 = 1
 x2 = 25/11- (-1 x 1)/11- (-1 x -1)/11- (3 x 1.001)/11 = 2
 x3 = -11/10- (2 x 1)/10- (-1 x 2)/10- (-1 x 1.001)/10 = -1
 x4 = 15/8- (0 x 1)/8- (3 x 2)/8- (-1 x -1)/8 = 1


