2 1 point Let W be the subspace spanned by orthogonal Find t

2. [1 point Let W be the subspace spanned by orthogonal. Find the orthogonal projection of into W. Note that this basis is not

Solution

Let v = (-4,8,0,0)T , u1 = (1,-1,1,1)T, u2 = (3, -3,5,5)T and v3 = (3,-5,1,3)T .Then:

Proju1(v) = [(v.u1)/(u1.u1)]u1 = [(-4-8)/(1+1+1+1)]u1= (-12/4)u1 = -3(1,-1,1,1)T = (3,-3,3,3)T.

Proju2(v) = [(v.u2)/(u2.u2)]u2 = [(-12-24)/(9+9+25+25)]u2 = (-36/68)u2 = -9/17(3, -3,5,5)T= (-27/17,27/17,-45/17,-45/17)T

Proju3(v) = [(v.u3)/(u3.u3)]u3 =[(-12-40)/(9+25+1+9)]u3 = (-52/44)u3 = -13/11(3,-5,1,3)T = (-39/11, 65/11, -13/11, -39/11)T . Hence, the projection of v onto W =

(3,-3,3,3)T+(-27/17,27/17,-45/17,-45/17)T+(-39/11, 65/11, -13/11, -39/11)T = (-229/187,841/187,-138/187,-597/187)T

 2. [1 point Let W be the subspace spanned by orthogonal. Find the orthogonal projection of into W. Note that this basis is not SolutionLet v = (-4,8,0,0)T , u1

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site