Consider the helix rt cos2t sin2t 2t Compute at t pi6 The
     Consider the helix r(t) = (cos(-2t), sin(-2t), 2t). Compute, at t = pi/6:  The unit tangent vector T =  The unit normal vector N =  The unit binormal vector B =  The curvature K =   
  
  Solution
r(t) = (cos2t, -sin2t, 2t)
 r\'(t) = (-2sin2t, -2cos2t, 2)
 |r\'(t)| = 4sin^2(2t) + 4cos^2(2t) + 4
 |r\'(t)| = 8
 |r\'(t)| = 22
 Unit Tangent Vector, T(t) = r\'(t)/|r\'(t)|
 T(t) = 1/22(-2sin2t, -2cos2t, 2)
 T\'(t) = 1/22(-4cos2t, 4sin2t, 0)
 |T\'(t)| = 1/22 16cos^2(2t) + 16sin^2(2t)
 |T\'(t)| = 42
 Unit Normal vector, N(t) = T\'(t)/|T\'(t)|
 N(t) = 42 * 1/22(-4cos2t, 4sin2t, 0)
 N(t) = (-8cos2t, 8sin2t, 0)
 Binormal vector, B(t) = T(t) x N(t)
 B(t) = [1/22(-2sin2t, -2cos2t, 2)] x [(-8cos2t, 8sin2t, 0)]
 B(t) = 1/22 (-16sin2t, -16cos2t, 16)
 B(t) = (42sin2t, -42cos2t, 42)

