bwork math 2010002Spl lllnUTU EF part 2 Problem 4 Prev TUp T
bwork math -2010-002-Spl lllnUTU EF part 2: Problem 4 Prev TUp TNe Solve the system using elimination 6 12y +32 11 42 2y 2 14 Note: You can earn partial credit on this problem. Preview Answers l Submit Answers You have attempted this problem 0 times. You have unlimited attempts remaining 
Solution
6x+2y+3z=11...(1)
5x-2y-4z=-3.....(2)
2x+3y+6z=14...(3)
(1)+(2)
(6x+2y+3z=11)+(5x-2y-4z=-3)=(11x-z=8)....(4)
3*(1)-2*(3)
2*(2x+3y+6z)=(4x+6y+12z=28)
3*(6x+2y+3z=11)=18x+6y+9z=33
3*(1)-2*(3)
(18x+6y+9z=33)-(4x+6y+12z=28)={12x-3z=5)...(5)
Now (4)*3-(5)
(33x-3z=24)-(12x-3z=5)={11x=19}
x=(19/11)
Now substitute x value in (4) then we get z
11*(19/11)-z=8
19-z=8
z=11
For y value keep x and z in any equation given
Let (1)
6*(19/11)+2y+3(11)=11
(114/11)+2y+33=11
114/11)+2y=-22
2y=-22-(114/11)
2y=((-22*11-114)/11)
2y=((-242-114)/11)
2y=(-356/11)
y=(-356/11)*(1/2)
y=(-118/11)
Therefore x=19/11,y=(-118/11)z=11
Proof:
6(19/11)+2(-118/11)+3(11)=11
114-356+(33*11)=121
114-356+363=121
477-356=121
121=121
Therefore
X=19/11
Y=-118/11
Z=11

