Use the information given about the angle theta 0 lessthanor

Use the information given about the angle theta, 0 lessthanorequalto theta lessthanorequalto 2 pi, to find the tan theta = -10, sin theta

Solution

tan @ = -10

0<= @ <=2 pi it means @ (angle) lies in IV quadrant.

from Sec2@ - tan2@ = 1

Sec@ = +_ ( 1 + tan2@ )1/2

sec@ = +_ ( 1 +100)1/2

sec@ = + (101)1/2

[ +ve sign becasuse in IV quadrant Sec@ is positive)

Cos @ = 1/ Sec@

Cos@ = 1/ (101)1/2

B) cos 2@ = 2*cos2@ -1

cos 2@ = 2*( 1/(101)1/2)2 -1 = (2/101) - 1

Cos 2@ = - 99/ 101

----------------------------------

c) from Cos 2@ = 1- 2*sin2@

cos@ = 1- 2*sin2(@/2)

sin2(@/2) = (1- cos@)/2 =[ 1- ( 1/(101)1/2) ] / 2 = 0.4505

sin(@/2)= +_ ( 0.4505)1/2

sin(@/2) = - 0.671

[ -ve sign because in Iv quadrant sin@ is negative ]

---------------------------------------

D) from cos 2@ = 2*cos2 @ - 1

cos@ = 2*cos2(@/2) - 1

cos2(@/2) = (cos @+1)/2 = [( 1/ (101)1/2) +1] / 2 = 0.5495

cos (@/2) = +_ (0.5495)1/2

cos (@/2) = + 0.741

[ in IV quadrant cos @ = positive]

 Use the information given about the angle theta, 0 lessthanorequalto theta lessthanorequalto 2 pi, to find the tan theta = -10, sin theta Solutiontan @ = -10 0

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site