verify Identities 1 sec4theta tan4theta sec2thetatan2theta
verify Identities: 1. sec^4theta- tan^4theta / sec^2theta+tan^2theta = sec^2theta - tan^2theta
2, costheta + 1 / tan^(2)theta )=(cos\\theta )/(sec\\theta -1)
Solution
1) We have given (sec4(theta)- tan4(theta)) / (sec2(theta)+tan2(theta)) = sec2(theta) - tan2(theta)
take LHS=(sec4(theta)- tan4(theta)) / (sec2(theta)+tan2(theta))
=((sec2(theta))2- (tan2(theta))2) / (sec2(theta)+tan2(theta))
use the formula a^2-b^2=(a+b)*(a-b) as a=sec2(theta) and b=tan2(theta)
=((sec2(theta))- (tan2(theta))*(sec2(theta))+(tan2(theta))) / (sec2(theta)+tan2(theta))
=sec2(theta))- (tan2(theta)
=RHS
(sec4(theta)- tan4(theta)) / (sec2(theta)+tan2(theta)) = sec2(theta) - tan2(theta)
the given Idenitity is equal
2) We have given (cos(theta)+1)/tan2(theta) =cos(theta)/(sec(theta)-1)
take LHS=(cos(theta)+1)/tan2(theta)
=(1/sec(theta) +1)/(sec2(theta)-1) since cos(theta)=1/sec(theta) and tan2(theta)=sec2(theta)-1
=[(1+sec(theta))/sec(theta)]/[(sec(theta)-1)*(sec(theta)+1)]
=[(sec(theta)+1)/sec(theta)] *[1/(sec(theta)-1)*(sec(theta)+1)]
=[1/sec(theta)]*[1/(sec(theta)-1)]
=cos(theta)/(sec(theta)-1) since cos(theta)=1/sec(theta)
=RHS
Therefore (cos(theta)+1)/tan2(theta) =cos(theta)/(sec(theta)-1)
the given identity is true
