Verify the identity using trig rules sin2 tan cos z 1 sin a
Verify the identity using trig rules. sin2() tan( cos (z) 1 sin (a sin2 (x) + tan2 (z) cos2 (x) + 1
Solution
(sin2x - tan2x)/(sin2x + tan2x) = (cos2x - 1)/(cos2x + 1)
LHS = (sin2x - tan2x)/(sin2x + tan2x) = (sin2x - sin2x/cos2x)/(sin2x + sin2x/cos2x)
= sin2x*(cos2x - 1)/sin2x*(cos2x + 1) = (cos2x - 1)/(cos2x + 1) = RHS
