Learning Goal To determine Cartesian force components from m
Solution
DA = A - D = (-4.3, -3.5, 2.40) - (0,0,0) = -4.3i - 3.5j + 2.40k
this is the vector in same direction as Tda is.
so DAcap = DA/ |DA| = (-4.3i - 3.5j + 2.40k ) / sqrt(4.3^2 + 3.5^2 + 2.40^2) = (-4.3i - 3.5j + 2.40k ) / 6.04
suppose magnitdue of Tda is 9.62 lb then
vector Tda =|Tda| DAcap = - 6.85i - 5.57j + 3.82k
similarly,
DB = B - D = 2.40i - 2.50j + 1.80k
DBcap = (2.40i - 2.50j + 1.80k ) / sqrt(2.40^2 + 2.50^2 + 1.80^2)
= (2.40i - 2.50j + 1.80k ) / 3.91
Tdb = |Tdb| DBcap = 3.34i - 3.48j + 2.51k lb
DC = C - D = 2.40i + 5.80j - 1.70k
DCcap = (2.40i + 5.80j - 1.70k ) / 6.50 = 0.369i + 0.892j - 0.261k
suppose magnitude of Tdc is T then
Tdc = T ( 0.369i + 0.892j - 0.261k)
and weight force, W = - 3.1k lb
D is in equilibrium so net force on it will be zero.
Fnet = Tda + Tdb + Tdc + W = 0
- 6.85i - 5.57j + 3.82k + 3.34i - 3.48j + 2.51k lb + Tdc - 3.1k =0
Tdc = 3.51i + 9.05j - 3.23k
magnitude = sqrt(3.51^2 + 9.05^2 + 3.23^2) = 10.23 lb ..........Ans
