Enter a calculator syntax form eg px2 x3 qx r of det A x
Solution
17/2 8 19/2
A = 1 3 1
-13/2 -8 -15/2
The characterstic polynomial is =>
( A - xI ) = >
17/2 8 19/2 1 0 0
1 3 1 - x ( 0 1 0 ) = 0
-13/2 -8 -15/2 0 0 1
we get
17/2 - x 8 19/2
1 3 - x 1 = 0
-13/2 -8 -15/2 - x
.
(17/2 - x) [(3-x) (-15/2 - x) - 1 * (-8) ] - 8 [1 * (-15/2 - x) + 13/2] + 19/2 [1 * (-8) +(13/2) * (3 - x) ] = 0
on solving this we get
- x^3 + 4x^2 - x - 6 = 0 // this is our characteristic polynomial
(-1)(x + 1)(x - 2)(x - 3) = 0
(x + 1)(x - 2)(x - 3) = 0
On solving these we get eigenvalues for the matrix A
x = -1 , 2 , 3 // eigenvalues
![Enter a calculator syntax form. (e.g. px^2 - x^3 + qx + r). of det (A - xI). the characters polynomial of the A = where A = [17/2 8 19/2 1 3 1 -13/2 -8 -15/2] Enter a calculator syntax form. (e.g. px^2 - x^3 + qx + r). of det (A - xI). the characters polynomial of the A = where A = [17/2 8 19/2 1 3 1 -13/2 -8 -15/2]](/WebImages/42/enter-a-calculator-syntax-form-eg-px2-x3-qx-r-of-det-a-x-1130571-1761603886-0.webp)