Convert 12110 to binary using a repeated subtraction method
Convert 12110 to binary using a.) repeated subtraction method b.) division remainder method
Solution
b)
=====================================================================================
repeated subtraction method
2^13 12110-8192 3918 1
2^12 3918-0 3918 10
2^11 3918-2048 1870 101
2^10 1870-1024 846 1011
2^9 846-512 334 10111
2^8 334-256 78 101111
2^7 78-0 78 1011110
2^6 78-64 14 10111101
2^5 14-0 14 101111010
2^4 14-0 14 1011110100
2^3 14-8 6 10111101001
2^2 6-4 2 101111010011
2^1 2-2 0 1011110100111
2^3 0-0 0 10111101001110
| A | Power of 2: | 214 | 213 | 212 | 211 | 210 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 |
| B | Remainder of Division: | 12110 | 12110 | 3918 | 3918 | 1870 | 846 | 334 | 78 | 78 | 14 | 14 | 14 | 6 | 2 | 0 |
| C | Place value (A result): | 16384 | 8192 | 4096 | 2048 | 1024 | 512 | 256 | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
| D | Binary digit B ÷ C: | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
