Connect a battery to a solenoid A cylindrical solenoid 42 cm
Solution
N1 = 200
l = 42 cm = 0.42 m
r = 8 mm = 0.008 m
R1 = 175 ohm
N2 = 2
R2 = 2 ohm
Inductance of the solenoid, L = u*N1*I = u*N1*Io*(1 - e^(-t*R2/L))
where Io = initial current through the solenoid, = V/R2 = 9/20 = 0.45 A
So, L = 1.26*10^-6*200*0.45*(1 - e^(-t*2/L))
At t = 1 us ,
L = 1.26*10^-6*200*0.45*(1 - e^(-(1*10^-6)*2/L))
Soo, L = 1.46*10^-5 H
So, Current in the inductor = 0.45*(1 - e^(-(1*10^-6)*2/(1.46*10-5)))
= 0.058 A
So, flux in the inductor in time t = N2 *L*I = 2*1.26*10^-6*200*(0.45*(1 - e^(-(1*10^-6)*2/L)))^2
So, emf in time t = 1 us,
E = 2*1.26*10^-6*200*2*(0.45*(1 - e^(-(1*10^-6)*2/L)))*(0.45*(2/L)*e^(-t*2/L))
= 2*1.26*10^-6*200*2*(0.45*(1 - e^(-(1*10^-6)*2/(1.46*10^-5))))*(0.45*(2/(1.46*10^-5))*e^(-(1*10^-6)*2/(1.46*10^-5)))
= 3.12 V
So, current in the rectangular loop = 3.12/175 = 0.0178 A
