submitdep14902920 For each given matrix A first compute detA
Solution
Sol:
let A=
0 -1 1
-1 3 1
2 0 5
detA=0 det[3 1 +1 det[ -1 1 +1 det [-1 3
0 5] 2 5] 2 0]
=0+1[-1*5-1*2]+1[-1*0-3*2]
=0+1[-5-2]+1[0-6]
=-7-6
detA=-13
interchange two rows: R2 AND R3
A\'
= 0 -1 1
2 0 5
-1 3 1
=0 det[0 5 +1 det[2 5 +1 det[ 2 0
3 1] -1 1] -1 3]
=0+1(2+5)+1(6-0]
=0+7+6
detA\'=13
interchanging rows changes sign of the determinant from negative 13 to positive 13.value remains constant.
previously it was positive value now negative after interchanging two rows.
Solutionb:
let A= 4 2 1
0 1 1
0 0 -2
detA=4det[1 1 -2det[ 0 1 +1det[0 1
0 -2] 0 -2] 0 0]
=4[1*-2-1*0]-2[0*-2-1*0]+1[0*0-1*0]
=4[-2-0]-2[0-0]+1[0-0]
detA=-8
interchange first and second rows
A\'= 0 1 1
4 2 1
0 0 -2
det A\'
=0 det[2 1 -1det[ 4 1 +1 det[ 4 2
0 -2] 0 -2] 0 0]
=0[2*-2-1*0]-1(4*-2-1*0)+1(4*0-2*0]
=0-1(-8-0)+1(0)
=-1(-8)
=8
interchanging rows changes sign
here negative 8 to positive 8
marked option is right

