Represent the following linear transformations in the standa

Represent the following linear transformations in the standard base: (a) T(1, 2, 3) = (2, 1) T(2, 3, 1) = (1, 2) T(1, 1, 1) = (3, 1) (b) R(3, 4, 4) = (2, 1, 2, 1) R(1, 0, 1) = (3, 5, 1, 2) R(0, 7, 2) = (0, 9, -1, 0) (c) Q(1, 1) = (3, 2, 1) Q(6, 7) = (0, 1, 4)

Solution

(a) Let A =

1

2

1

1

0

0

2

3

1

0

1

0

3

1

1

0

0

1

The RREF of A is

1

0

0

-2/3

1/3

1/3

0

1

0

-1/3

2/3

-1/3

0

0

1

7/3

-5/3

1/3

Hence e1 = (1,0,0)T = -2/3(1,2,3)T -1/3(2,3,1)T+7/3(1,1,1)T ,

e2 = (0,1,0)T = 1/3(1,2,3)T +2/3(2,3,1)T-5/3(1,1,1)T and

e3 = (0,0,1)T = 1/3(1,2,3)T -1/3(2,3,1)T+1/3(1,1,1)T

Therefore, T(e1) = -2/3(2,1)T-1/3(1,2)T+7/3(3,1)T = (16/3,1)T.

Also, T(e2) = 1/3(2,1)T+ 2/3(1,2)T-5/3(3,1)T = (-11/3, 0)T.

(b) Let A =

3

1

0

1

0

0

4

0

7

0

1

0

4

1

2

0

0

1

The RREF of A is

1

0

0

7

2

-7

0

1

0

-20

-6

21

0

0

1

-4

-1

4

Hence e1 = (1,0,0)T =7(3,4,4)T-20(1,0,1)T -4(0,7,2)T

Also, e2 = (0,1,0)T =2(3,4,4)T-6(1,0,1)T -1(0,7,2)T and

e3 = (0,0,1)T =-7(3,4,4)T+21(1,0,1)T +4(0,7,2)T

Therefore, R(e1) = 7( 2,1,2,1)T -20( 3,5,1,2)T -4(0,9,-1,0)T = (-46,-129,-2,-33)T

Also, R(e2) = 2( 2,1,2,1)T -6( 3,5,1,2)T -1(0,9,-1,0)T = (-14,-37,-1,-10)T and

R(e3) = -7( 2,1,2,1)T +21( 3,5,1,2)T +4(0,9,-1,0)T = (49,134,3,35)T

(c) Let A =

1

6

1

0

1

7

0

1

The RREF of A is

1

0

7

-6

0

1

-1

1

Hence e1 = (1,0)T =7(1,1)T-1(6,7)T and e2 = (0,1)T =-6(1,1)T + 1(6,7)T

Therefore, Q(e1) =7(3,2,1)T-1(0,1,4)T=(21,13,3)T and Q(e2) = -6(3,2,1)T +1(0,1,4)T = (-18,11,-2)T

Note: We know that , for a linear transformation L, we have L( ax+by+c) = aL(x) +bL(y) +cL(z)

1

2

1

1

0

0

2

3

1

0

1

0

3

1

1

0

0

1

 Represent the following linear transformations in the standard base: (a) T(1, 2, 3) = (2, 1) T(2, 3, 1) = (1, 2) T(1, 1, 1) = (3, 1) (b) R(3, 4, 4) = (2, 1, 2,
 Represent the following linear transformations in the standard base: (a) T(1, 2, 3) = (2, 1) T(2, 3, 1) = (1, 2) T(1, 1, 1) = (3, 1) (b) R(3, 4, 4) = (2, 1, 2,
 Represent the following linear transformations in the standard base: (a) T(1, 2, 3) = (2, 1) T(2, 3, 1) = (1, 2) T(1, 1, 1) = (3, 1) (b) R(3, 4, 4) = (2, 1, 2,
 Represent the following linear transformations in the standard base: (a) T(1, 2, 3) = (2, 1) T(2, 3, 1) = (1, 2) T(1, 1, 1) = (3, 1) (b) R(3, 4, 4) = (2, 1, 2,

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site