Find the solution to the following linear homogeneous recurr
Find the solution to the following linear, homogeneous recurrence with constant coefficients: a_n = 12 a_n-1 -35 a_n-2 for n greaterthanorequalto 2 with initial conditions a_0 = - 1, a_1 = -8. The solution is of the form: a_n = alpha_1 (r_1)^n + alpha_2 (r_2)^n for suitable constants alpha_1, alpha_2, r_1, r_2 with r_1 lessthanorequalto r_2. Find these constants. r_1 = r_2 = alpha_1 = alpha_2 =
Solution
using
an = r^n
an-1 = r^(n-1)
an-2 = r^(n-2)
r^n = 12*r^(n-1) - 35*r^(n-2)
dividing by r^(n-2)
r^2 = 12*r - 35
r^2 - 12r + 35 = 0
(r - 7)(r - 5) = 0
r1 = 5 & r2 = 7
Now using initial conditions:
an = A1*r1^n + A2*r2^n
A1 = alpha1 & A2 = alpha2
when n= 0, a0 = -1
-1 = A1*r1^0 + A2*r2^0
A1 + A2 = -1
when n = 1, a1 = -8
-8 = A1*r1^1 + A2*r2^1
A1*r1 + A2*r2 = -8
5*A1 + 7*A2 = -8
A1 + A2 = -1
Solving both equations:
A2 = -3/2
alpha2 = -1.5
A1 = alpha1 = 0.5
