secBcscBxcosBsinB cotBtanB show as an identitySolution sec b
(secB+cscB)x(cosB-sinB)= cotB-tanB show as an identity.
Solution
( sec b + csc b) * ( cos b - sin b ) = cot b - tan b
proving the left hand side
sec b = 1/ cos b
csc b = 1/ sin b
( 1/ cos b + 1/ sin b ) ( cos b - sin b)
(sin b + cos b) /( cos b sin b) ( cos b - sin b)
( cos^b - sin^2 b ) / (cos b sin b )
cos^2b / ( cos b sin b ) = cot b
sin^2 b / cos b sin b = tan b
hence we get
cot b - tan b which is right hand side
proved !
