A discrete random variable X has the PMF pXk 15 for k 0 1
A discrete random variable X has the PMF pX[k] = 1/5 for k = 0, 1, 2, 3, 4. If Y = aX + b,
(a) Find E[X].
(b) Find var(X).
(c) Find the PMF of Y ?
(d) Find E[Y ].
(e) Find var(Y ).
Solution
a) Expected value of X = ( 1/5) * [ 0 + 1 + 2 + 3 + 4 + 5 ]
= 2
b) var (X) = (1/5) * [ (0 - 2)2 + (1 - 2)2 + (2 - 2)2 + (3 - 2)2 + (4 - 2)2 ]
= (1/5) * [ 4 + 1 + 0 + 1 +4]
= 2
c)
PMF ( Y = aX + b) = 1/5
d)
E (Y) = E ( aX + b) = a E(X) + b
= a(2) + b
= 2a + b
e)
Var ( Y ) = Var ( aX + b)
= a2 Var(X) + var(b)
= a2 (2)
= 2a2
![A discrete random variable X has the PMF pX[k] = 1/5 for k = 0, 1, 2, 3, 4. If Y = aX + b, (a) Find E[X]. (b) Find var(X). (c) Find the PMF of Y ? (d) Find E[Y A discrete random variable X has the PMF pX[k] = 1/5 for k = 0, 1, 2, 3, 4. If Y = aX + b, (a) Find E[X]. (b) Find var(X). (c) Find the PMF of Y ? (d) Find E[Y](/WebImages/43/a-discrete-random-variable-x-has-the-pmf-pxk-15-for-k-0-1-1134437-1761606834-0.webp)