For the set of vectors S 1 0 1 1 0 2 0 3 3 1 1 5 Use the Gr
Solution
Let A =
1
0
-3
0
2
-1
1
0
1
1
3
5
The RREF of A is
1
0
0
0
1
0
0
0
1
0
0
0
Thus, the three vectors in S are linearly independent. Let v1 = (1,0,1,1), v2 = (0,2,0,3) and v3 = (-3,-1,1,5).
(a). Let u1= v1. Also, let u2=v2–proju1(v2)= v2–[(v2.u1)/(u1.u1)]u1= v2–(3/3)u1 = (0,2,0,3)-(1,0,1,1)=(-1,2,-1,2) and u3 = v3 - proju1(v3)- proju2(v3)= v3 -[(v3.u1)/(u1.u1)]u1-(v3.u2)/(u2.u2)]u2 = v3 –(3/3)u1-(10/10) u2 = v3 –u1- u2 = (-3,-1,1,5)- (1,0,1,1)- (-1,2,-1,2) = ( -3,-3,1,2). Then {u1,u2,u3} is an orthogonal basis for span{S} . Further, let e1 = u1/|| u1|| = (1/3,0,1/3,1/3), e2 = u2/|| u2|| = (-1/10,2/10,-1/10,2/10) and e3 = u3/|| u3||= ( -3/23,-3/23,1/23,2/23). Then {e1,e2,e3} is an orthonormal basis for span{S}.
(b) Let w = (13,-5,-21,11). Then proju1(w) = [(w.u1)/(u1.u1)]u1 = [3/3]u1 = (1,0,1,1)
Also, proju2(w) = [(w.u2)/(u2.u2)]u2 = (20/10) u2 =2(-1,2,-1,2) = (-2,4,-2,4) and proju3(w) = [(w.u3)/(u3.u3)]u3 = ( -23/23)u3 = -u3 = -( -3,-3,1,2) = (3,3,-1,-2).
Then, the projection of W onto span{S} = (1,0,1,1)+ (-2,4,-2,4)+ (3,3,-1,-2) = (2,7,-2,3)
| 1 | 0 | -3 |
| 0 | 2 | -1 |
| 1 | 0 | 1 |
| 1 | 3 | 5 |

