For y 5y 6y 2et cos5t give the particular solution Yt use
For y\" + 5y\' + 6y = 2e-t cos(5t) give the particular solution, Y(t), used in the method of undetermined coefficients.
Solution
Let y = e-t(A cos 5t + B sin 5t)
y\' = e-t(-5A sin 5t + 5B cos 5t) - e-t(A cos 5t + B sin 5t)
y\'\' = e-t(-25A cos 5t - 25B sin 5t) - 2e-t(-5A sin 5t + 5B cos 5t) + e-t(A cos 5t + B sin 5t)
Put them into the equation,
e-t(-25A cos 5t - 25B sin 5t) - 2e-t(-5A sin 5t + 5B cos 5t) + e-t(A cos 5t + B sin 5t)
+ 5[e-t(-5A sin 5t + 5B cos 5t) - e-t(A cos 5t + B sin 5t)]
+ 6e-t(A cos 5t + B sin 5t) = 2e-t cos 5t
then
-25A cos 5t - 25B sin 5t + 10A sin 5t - 10B cos 5t + A cos 5t + B sin 5t
- 25A sin 5t + 25B cos 5t - 5A cos 5t - 5B sin 5t
+ 6A cos 5t + 6B sin 5t = 2cos 5t
so
-23A + 15B = 2
-15A - 23B =0.
so A = -23/377, B = 15/377
so y = et (-23 cos 5t + 15 sin 5t)/377
