211 Let E denote the region above the paraboloid z x2 y2 a
2.11) Let E denote the region above the paraboloid z = x^2 + y^2 and below the half-cone
 z = x^2 + y^2.
(b) Set up (butdo notevaluate) the triple iterated integral in spherical coordinates for <?xml:namespace prefix = o ns = \"urn:schemas-microsoft-com:office:office\" /?>
the volume of the region E.
Solution
earlier in cylindrical coordinates
x = r cos , y = r sin , z = z, dV = rdrddz.
now spherical coordinates
x = sincos , y = sinsin , z = cos, dV = 2sinddd
just change the limits appropriately for these values of ,, from the earlier solution

