Find the orthogonal projection of v rightarrow 19 18 9 8 on
Find the orthogonal projection of v rightarrow = [19 18 -9 8] onto the subspace W spanned by {[-1 1 -5 4], [-1 -1 4 -2], [-4 -3 2 -1]}. proj_w(v rightarrow) = []
Solution
Let u1 = (-1,1,-5,4)T , u2 = (-1,-1,4,-2)T and u3 = (-4,-3,2,-1)T. Then
Proju1(v) = [(v.u1)/(u1.u1)]u1= [(-19+18+45+32)/(1+1+25+16)]u1= 76/43(-1,1,-5,4)T= (-76/43,76/43,-380/43,304/43)T.
Proju2(v) = [(v.u2)/(u2.u2)]u2= [(-19-18-36-16)/(1+1+16+4)]u2 =( -89/22) (-1,-1,4,-2)T = (89/22,89/22,-178/11,89/11)T.
Proju3(v) = [(v.u3)/(u3.u3)]u3= [(-76-54-18-8)/(16+9+4+1)]u3= (-156/30)u3= -26/5(-4,-3,2,-1)T = (104/5,78/5,-52/5,26/5)T.
Then the orthogonal projection of v onto W is (-76/43,76/43,-380/43,304/43)T+ (89/22,89/22,-178/11,89/11)T + (104/5,78/5,-52/5,26/5)T = (109159/4730,101283/4730,-83766/2365,47703/2365)T
![Find the orthogonal projection of v rightarrow = [19 18 -9 8] onto the subspace W spanned by {[-1 1 -5 4], [-1 -1 4 -2], [-4 -3 2 -1]}. proj_w(v rightarrow) = Find the orthogonal projection of v rightarrow = [19 18 -9 8] onto the subspace W spanned by {[-1 1 -5 4], [-1 -1 4 -2], [-4 -3 2 -1]}. proj_w(v rightarrow) =](/WebImages/43/find-the-orthogonal-projection-of-v-rightarrow-19-18-9-8-on-1135776-1761607864-0.webp)