p q2 89 16 and the demand function is p 1592 1024 288 fi
p = q2 + 89 16 and the demand function is p =-1592 + 1024 + 288, find the equilibrium quantity and equilibrium price. If the supply function for a commodity is (q, p) = (
Solution
1) p = q^2 +8q + 16 ; p = -15q^2 +102q + 288
Equilibrium quantity and price : q^2 +8q + 16 = -15q^2 +102q + 288
16q^2 - 94q - 272 =0
solve the quadratic: q = 8, -2.125 >neglect -ve value
So,q = 8 .Plug q=8 to find p:
p = 8^2 + 8*8 +16 = 64 +64 +16 = 144
(q, p ) = ( 8 , 144)
3) Revenue, R(x) = 100x
C(x) = x^2 +40x + 500
At equilibrium: R(x) = C(x)
100x = x^2 +40x +500
x^2 -60x +500 =0
x^2 -50x - 10x +500 =0
x(x-50) -10(x -50) =0
(x -10)(x -50)=0
x = 10, 50 units
4) C(x) = 4500 +4360x ; R(x) = 4500x - x^2
At equilibrium: R(x) = C(x)
4500 +4360x = 4500x - x^2
-x^2 + 140x -4500 =0
On solving for x we get :
x = 50, 90 , units
