In each case below determine whether the function given is i
In each case below, determine whether the function given is injective (one-to-one) and prove your answer. (a) f: Z rightarrow R where f(x) = (3x - 4)/8. (b) f: N times N rightarrow Q where f(a, b) = a/b. (c) f: N rightarrow R where f(n) = 1/n. (d) f: R rightarrow Z where f(x) = [x].
Solution
a)
Let, f(x)=f(y)
(3x-4)/8=(3y-4)/8
3x-4=3y-4
3x=3y
x=y
So, f is injective
b)
Not injective
BEcause,
f(a,b)=f(ma,mb) =(ma)/(mb)=a/b for any natural number m
c)
Let, f(n)=f(m)
1/n=1/m
n=m
So, f is injective
d)
Not injective
example:
f(1)=f(1.1)=1
