Definition of the inverse laplace tran 1S aS bSolution1sas
Definition of the inverse laplace tran [1/(S + a)(S + b)]
Solution
1/(s+a)(s+b)
Lets break it into pratial fractions:
1/(s+a)(s+b) = x/(s+a) +y/(s +b)
equating the coefficients on both sides:
1 = x(s+b) +y(s+a)
1 = s(x +y) + bx +ay
x+y = 0 ; bx +ay = 1
x = -y ; bx -ax =1
x = 1/(b-a) ; y = -1/(b-a)
1/(s+a)(s+b) = 1/(b-a)(s+a) - 1/(b-a)(s+b) (Partial fraction)
![Definition of the inverse laplace tran [1/(S + a)(S + b)]Solution1/(s+a)(s+b) Lets break it into pratial fractions: 1/(s+a)(s+b) = x/(s+a) +y/(s +b) equating t Definition of the inverse laplace tran [1/(S + a)(S + b)]Solution1/(s+a)(s+b) Lets break it into pratial fractions: 1/(s+a)(s+b) = x/(s+a) +y/(s +b) equating t](/WebImages/44/definition-of-the-inverse-laplace-tran-1s-as-bsolution1sas-1136863-1761608728-0.webp)