log4 g log4 9 log 4 5 log67s2 112 log670s Solve for x in
log4 g + log4 9 = log 4 5 log6(7s^2 + 112) = log6(-70s) Solve for x in terms of y: y = log_4(-3x^5) y = log_2(9x^3 - 10)
Solution
5)
log4 g + log4 9 = log4 5
log4 (g * 9) = log45 // loga x + loga y = loga (x*y)
log g / log 4 + log 9 / log 4 = log 5 / log 4
(log 9 + log 9) / log 4 = log 5 / log 4
Taking antilog borh sides, we get
9 * g = 5
g = 5/9
.
6)
log6 (7s2 + 112) = log6 (-70s)
log (7s2 + 112) / log 6 = log (-70s) / log 6
taking antilog both sides, we get
7s2 + 112 = -70s
7s2 + 70s + 112 = 0
s2 + 10s + 16 = 0
s2 + 8s + 2s + 16 = 0
s(s+8) + 2(s+8) = 0
(s+8) (s+2) = 0
s = -2 or s = -8
.
7)
y = log4 (-3x5)
Using log b x = y = > x = by
so using this we get
(-3x5) = 4y
x5 = 4y / 3
x = (4y / 3)1/5
