log4 g log4 9 log 4 5 log67s2 112 log670s Solve for x in

log4 g + log4 9 = log 4 5 log6(7s^2 + 112) = log6(-70s) Solve for x in terms of y: y = log_4(-3x^5) y = log_2(9x^3 - 10)

Solution

5)

log4 g + log4 9 = log4 5

log4 (g * 9) = log45                     // loga x + loga y = loga (x*y)

log g / log 4      + log 9 / log 4 = log 5 / log 4

(log 9 + log 9) / log 4 = log 5 / log 4

Taking antilog borh sides, we get

9 * g = 5

g = 5/9

.

6)

log6 (7s2 + 112) = log6 (-70s)

log (7s2 + 112) / log 6 = log (-70s) / log 6

taking antilog both sides, we get

7s2 + 112 = -70s

7s2 + 70s + 112 = 0

s2 + 10s + 16 = 0

s2 + 8s + 2s + 16 = 0

s(s+8) + 2(s+8) = 0

(s+8) (s+2) = 0

s = -2 or s = -8

.

7)

y = log4 (-3x5)

Using   log b x = y = > x = by

so using this we get

(-3x5) = 4y

x5 = 4y / 3

x = (4y / 3)1/5

 log4 g + log4 9 = log 4 5 log6(7s^2 + 112) = log6(-70s) Solve for x in terms of y: y = log_4(-3x^5) y = log_2(9x^3 - 10)Solution5) log4 g + log4 9 = log4 5 log

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site