Solve for z cosz log e 2 3 Solve for z sinz 5Solution1 cos
Solve for z: cos(z) = log e (2) (3) Solve for z: sin(z) = 5.
Solution
1) cos(z) = loge(2)
cosz = (e^iz +e^-iz)/2
So, (e^iz +e^-iz)/2 = loge(2)
e^2iz + 1 - 2e^izloge(2) =0
solve the quadratic: x^2 -2xloge(2) +1 =0
x = ( 2loge(2) +/- sqrt(4loge(2)^2 -4)/2
= loge(2) +/- sqrt(loge(2)^2 -1)
= 0.69 +/- i*0.52
e^iz = 0.69 +/- i*0.52
taking natural log on both sides:
z = [ln( 0.69 +/- i*0.52)]/i
2) sin(z) = 5
sinz = (e^iz - e^-iz)/2i
(e^iz - e^-iz)/2i = 5
e^2iz - 1= 10ie^z
e^2iz - 10ie^z -1 =0
solve the quadratic:
x^2 -10ix -1 =0
x = ( 10 +/- sqrt(-100 +4)/2
= 5 +/- i*sqrt(-24)
= 5 +/- i*2isqrt6 = 5 +/- 2sqrt6
e^iz = 5 +2sqrt6 ---> z = ln(5 +2sqrt6)/i
e^iz = 5 -2sqr6 ---> z = -2.29
